본문 바로가기
AI & 머신러닝 coding skill

[SEQUENCES, TIME SERIES AND PREDICTION] Sequences and Prediction

by 호빵님 2020. 11. 11.
반응형

코세라의   deeplearning.AI tensorflow developer 전문가 자격증 과정내에 Sequences, Time Series and Prediction

과정의 1주차 Sequences and Prediction 챕터의 코드 예제입니다.

 

time series data를 생성하고, 간단한 moving average를 이용해서 forcasting하는 과정입니다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
print(tf.__version__)
 
"""The next code block will set up the time series with seasonality, trend and a bit of noise."""
 
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
 
def plot_series(time, series, format="-", start=0, end=None):
    plt.plot(time[start:end], series[start:end], format)
    plt.xlabel("Time")
    plt.ylabel("Value")
    plt.grid(True)
 
def trend(time, slope=0):
    return slope * time
 
def seasonal_pattern(season_time):
    """Just an arbitrary pattern, you can change it if you wish"""
    return np.where(season_time < 0.4,
                    np.cos(season_time * 2 * np.pi),
                    1 / np.exp(3 * season_time))
 
def seasonality(time, period, amplitude=1, phase=0):
    """Repeats the same pattern at each period"""
    season_time = ((time + phase) % period) / period
    return amplitude * seasonal_pattern(season_time)
 
def noise(time, noise_level=1, seed=None):
    rnd = np.random.RandomState(seed)
    return rnd.randn(len(time)) * noise_level
 
time = np.arange(4 * 365 + 1, dtype="float32")
baseline = 10
series = trend(time, 0.1)  
baseline = 10
amplitude = 40
slope = 0.05
noise_level = 5
 
# Create the series
series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)
# Update with noise
series += noise(time, noise_level, seed=42)
 
plt.figure(figsize=(106))
plot_series(time, series)
plt.show()
 
"""Now that we have the time series, let's split it so we can start forecasting"""
 
split_time = 1000
time_train = time[:split_time]
x_train = series[:split_time]
time_valid = time[split_time:]
x_valid = series[split_time:]
plt.figure(figsize=(106))
plot_series(time_train, x_train)
plt.show()
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid)
plt.show()
 
"""# Naive Forecast"""
 
naive_forecast = series[split_time - 1:-1]
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid)
plot_series(time_valid, naive_forecast)
 
"""Let's zoom in on the start of the validation period:"""
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid, start=0, end=150)
plot_series(time_valid, naive_forecast, start=1, end=151)
 
"""You can see that the naive forecast lags 1 step behind the time series.
 
Now let's compute the mean squared error and the mean absolute error between the forecasts and the predictions in the validation period:
"""
 
print(keras.metrics.mean_squared_error(x_valid, naive_forecast).numpy())
print(keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy())
 
"""That's our baseline, now let's try a moving average:"""
 
def moving_average_forecast(series, window_size):
  """Forecasts the mean of the last few values.
     If window_size=1, then this is equivalent to naive forecast"""
  forecast = []
  for time in range(len(series) - window_size):
    forecast.append(series[time:time + window_size].mean())
  return np.array(forecast)
 
moving_avg = moving_average_forecast(series, 30)[split_time - 30:]
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid)
plot_series(time_valid, moving_avg)
 
print(keras.metrics.mean_squared_error(x_valid, moving_avg).numpy())
print(keras.metrics.mean_absolute_error(x_valid, moving_avg).numpy())
 
"""That's worse than naive forecast! The moving average does not anticipate trend or seasonality, so let's try to remove them by using differencing. Since the seasonality period is 365 days, we will subtract the value at time *t* – 365 from the value at time *t*."""
 
diff_series = (series[365:] - series[:-365])
diff_time = time[365:]
 
plt.figure(figsize=(106))
plot_series(diff_time, diff_series)
plt.show()
 
"""Great, the trend and seasonality seem to be gone, so now we can use the moving average:"""
 
diff_moving_avg = moving_average_forecast(diff_series, 50)[split_time - 365 - 50:]
 
plt.figure(figsize=(106))
plot_series(time_valid, diff_series[split_time - 365:])
plot_series(time_valid, diff_moving_avg)
plt.show()
 
"""Now let's bring back the trend and seasonality by adding the past values from t – 365:"""
 
diff_moving_avg_plus_past = series[split_time - 365:-365+ diff_moving_avg
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid)
plot_series(time_valid, diff_moving_avg_plus_past)
plt.show()
 
print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_past).numpy())
print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_past).numpy())
 
"""Better than naive forecast, good. However the forecasts look a bit too random, because we're just adding past values, which were noisy. Let's use a moving averaging on past values to remove some of the noise:"""
 
diff_moving_avg_plus_smooth_past = moving_average_forecast(series[split_time - 370:-360], 10+ diff_moving_avg
 
plt.figure(figsize=(106))
plot_series(time_valid, x_valid)
plot_series(time_valid, diff_moving_avg_plus_smooth_past)
plt.show()
 
print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_smooth_past).numpy())
print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_smooth_past).numpy())
cs

 

 

반응형