코세라의 deeplearning.AI tensorflow developer 전문가 자격증 과정내에
Convolutional Neural Networks in TensorFlow
과정의 3주차
Transfer Learning
챕터의 코드 예제입니다.
1) 다른 사람이 이미 training 시켜 놓은 layer와 weight를 이용하여 모델을 구성할 수 있다. InceptionV3 model와 weight를 다운로드받는다.
2) 내 모델의 input으로 쓰일 Inception model의 'mixed7' layer의 output을, last_output 으로 선언한다.
3) last_output을 input으로 사용할 수 있도록, flatten하고 내 모델의 dense layer에 입력으로 넣는다.
4) drop out로 0.2로 설정하면, 20% unit이 랜덤하게 학습시마다 drop되어 overfitting을 막아준다.
5) horse and human data set을 다운로드 받는다.
6) traing set과 data set으로 나눈다.
7) preprocessing.image name space의 ImageDataGenerator를 사용해서, ImageDataGenerator를 이용해서, 밝기를 1/255로 정규화한다. data augmentation기능을 사용해서 학습데이터를 증가시킨다. rotation, shift, shear, zoom, flip 등의 이미지를 변환하여, traing set의 수를 증가시킨다. 이 변환된 이미지들은 실재 디스크에 저장되지 않고, 원본을 바꾸지도 않는다. model fit traing중에 RAM memory에서만 생성되어, training set으로만 사용된다. 증가된 다양한 종류의 augmentation 된 training set들은 기존 training set에 너무 overfitting되는 학습을 막아준다.
8) flow_from_directory method를 이용해서, training data와 validation data가 있는 디렉토리를 설정하고, target image size와 class mode, batch size를 설정한다. train generator와 validation generator를 각각 선언한다.
9) 모델이 학습되도록 한다. fit_generator를 이용해서 모델을 훈련한다. train generator와 validation generator를 인자로 받는다.
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# ATTENTION: Please do not alter any of the provided code in the exercise. Only add your own code where indicated
# ATTENTION: Please do not add or remove any cells in the exercise. The grader will check specific cells based on the cell position.
# ATTENTION: Please use the provided epoch values when training.
# Import all the necessary files!
import os
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import Model
from os import getcwd
# In[2]:
path_inception = f"{getcwd()}/../tmp2/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5"
# Import the inception model
from tensorflow.keras.applications.inception_v3 import InceptionV3
# Create an instance of the inception model from the local pre-trained weights
local_weights_file = path_inception
pre_trained_model = InceptionV3(input_shape = (150, 150, 3),
include_top = False,
weights = None) # Your Code Here
pre_trained_model.load_weights(local_weights_file)
# Make all the layers in the pre-trained model non-trainable
for layer in pre_trained_model.layers:
layer.trainable = False # Your Code Here
# Print the model summary
pre_trained_model.summary()
# Expected Output is extremely large, but should end with:
#batch_normalization_v1_281 (Bat (None, 3, 3, 192) 576 conv2d_281[0][0]
#__________________________________________________________________________________________________
#activation_273 (Activation) (None, 3, 3, 320) 0 batch_normalization_v1_273[0][0]
#__________________________________________________________________________________________________
#mixed9_1 (Concatenate) (None, 3, 3, 768) 0 activation_275[0][0]
# activation_276[0][0]
#__________________________________________________________________________________________________
#concatenate_5 (Concatenate) (None, 3, 3, 768) 0 activation_279[0][0]
# activation_280[0][0]
#__________________________________________________________________________________________________
#activation_281 (Activation) (None, 3, 3, 192) 0 batch_normalization_v1_281[0][0]
#__________________________________________________________________________________________________
#mixed10 (Concatenate) (None, 3, 3, 2048) 0 activation_273[0][0]
# mixed9_1[0][0]
# concatenate_5[0][0]
# activation_281[0][0]
#==================================================================================================
#Total params: 21,802,784
#Trainable params: 0
#Non-trainable params: 21,802,784
# In[3]:
last_layer = pre_trained_model.get_layer('mixed7')
print('last layer output shape: ', last_layer.output_shape)
last_output = last_layer.output # Your Code Here
# Expected Output:
# ('last layer output shape: ', (None, 7, 7, 768))
# In[4]:
# Define a Callback class that stops training once accuracy reaches 97.0%
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('accuracy')>0.97):
print("\nReached 97.0% accuracy so cancelling training!")
self.model.stop_training = True
# In[5]:
from tensorflow.keras.optimizers import RMSprop
# Flatten the output layer to 1 dimension
x = layers.Flatten()(last_output)
# Add a fully connected layer with 1,024 hidden units and ReLU activation
x = layers.Dense(1024, activation='relu')(x)
# Add a dropout rate of 0.2
x = layers.Dropout(0.2)(x)
# Add a final sigmoid layer for classification
x = layers.Dense (1, activation='sigmoid')(x)
model = Model(pre_trained_model.input, x)
model.compile(optimizer = RMSprop(lr=0.0001),
loss = 'binary_crossentropy',
metrics = ['accuracy'])
model.summary()
# Expected output will be large. Last few lines should be:
# mixed7 (Concatenate) (None, 7, 7, 768) 0 activation_248[0][0]
# activation_251[0][0]
# activation_256[0][0]
# activation_257[0][0]
# __________________________________________________________________________________________________
# flatten_4 (Flatten) (None, 37632) 0 mixed7[0][0]
# __________________________________________________________________________________________________
# dense_8 (Dense) (None, 1024) 38536192 flatten_4[0][0]
# __________________________________________________________________________________________________
# dropout_4 (Dropout) (None, 1024) 0 dense_8[0][0]
# __________________________________________________________________________________________________
# dense_9 (Dense) (None, 1) 1025 dropout_4[0][0]
# ==================================================================================================
# Total params: 47,512,481
# Trainable params: 38,537,217
# Non-trainable params: 8,975,264
# In[6]:
# Get the Horse or Human dataset
path_horse_or_human = f"{getcwd()}/../tmp2/horse-or-human.zip"
# Get the Horse or Human Validation dataset
path_validation_horse_or_human = f"{getcwd()}/../tmp2/validation-horse-or-human.zip"
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import zipfile
import shutil
shutil.rmtree('/tmp')
local_zip = path_horse_or_human
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/training')
zip_ref.close()
local_zip = path_validation_horse_or_human
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp/validation')
zip_ref.close()
# In[7]:
# Define our example directories and files
train_dir = '/tmp/training'
validation_dir = '/tmp/validation'
train_horses_dir = os.path.join(train_dir, 'horses') # Your Code Here
train_humans_dir = os.path.join(train_dir, 'humans') # Your Code Here
validation_horses_dir = os.path.join(validation_dir, 'horses') # Your Code Here
validation_humans_dir = os.path.join(validation_dir, 'humans') # Your Code Here
train_horses_fnames = os.listdir(train_horses_dir) # Your Code Here
train_humans_fnames = os.listdir(train_humans_dir) # Your Code Here
validation_horses_fnames = os.listdir(validation_horses_dir) # Your Code Here
validation_humans_fnames = os.listdir(validation_humans_dir) # Your Code Here
# Your Code Here
print(len(train_horses_fnames))
print(len(train_humans_fnames))
print(len(validation_horses_fnames))
print(len(validation_humans_fnames))
# Expected Output:
# 500
# 527
# 128
# 128
# In[8]:
# Add our data-augmentation parameters to ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255.,
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale = 1.0/255.)
# Flow training images in batches of 20 using train_datagen generator
train_generator = train_datagen.flow_from_directory(train_dir,
batch_size = 20,
class_mode = 'binary',
target_size = (150, 150))
# Flow validation images in batches of 20 using test_datagen generator
validation_generator = test_datagen.flow_from_directory( validation_dir,
batch_size = 20,
class_mode = 'binary',
target_size = (150, 150))
# Expected Output:
# Found 1027 images belonging to 2 classes.
# Found 256 images belonging to 2 classes.
# In[9]:
# Run this and see how many epochs it should take before the callback
# fires, and stops training at 97% accuracy
callbacks = myCallback() # Your Code Here
history = model.fit_generator(train_generator,
validation_data = validation_generator,
steps_per_epoch = 100,
epochs = 3,
validation_steps = 50,
verbose = 2, callbacks=[callbacks])
# In[10]:
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend(loc=0)
plt.figure()
plt.show()